买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
摘要:本发明提供的基于人工智能的元宇宙体验用户行为预测方法及系统,涉及人工智能技术领域。在本发明中,确定出目标用户操作行为序列的重要用户操作行为和对应的重要性评估参数;挖掘出每一个重要用户操作行为对应的操作行为含义数据;基于每一个操作行为含义数据和每一个参考行为目标的行为目标说明数据,分析出每一个重要用户操作行为与每一个参考行为目标之间的行为目标匹配参数;基于重要性评估参数和行为目标匹配参数,分析出目标用户操作行为序列和每一个参考行为目标之间的序列目标匹配参数;基于序列目标匹配参数,在每一个参考行为目标中,分析出对应的匹配行为目标。基于上述内容,可以提高用户行为预测的可靠度。
主权项:1.一种基于人工智能的元宇宙体验用户行为预测方法,其特征在于,包括:确定出目标用户操作行为序列的重要用户操作行为,以及,分析出每一个所述重要用户操作行为对应的重要性评估参数,所述重要用户操作行为属于所述目标用户操作行为序列中用于反映所述目标用户操作行为序列的行为倾向的用户操作行为,所述重要性评估参数用于反映对应的所述重要用户操作行为对所述目标用户操作行为序列具有的影响力大小,每一个重要用户操作行为通过至少一帧行为记录视频帧或行为描述音频帧表示;挖掘出每一个所述重要用户操作行为对应的操作行为含义数据,所述操作行为含义数据用于反映所述重要用户操作行为具有的行为内涵;基于每一个所述操作行为含义数据和预先确定的每一个参考行为目标的行为目标说明数据,分析出每一个所述重要用户操作行为与每一个所述参考行为目标之间的行为目标匹配参数,所述行为目标说明数据用于对所述参考行为目标进行说明,所述行为目标匹配参数用于反映所述重要用户操作行为和所述参考行为目标之间的匹配关系;基于每一个所述重要用户操作行为对应的重要性评估参数和每一个所述行为目标匹配参数,分析出所述目标用户操作行为序列和每一个所述参考行为目标之间的序列目标匹配参数,所述序列目标匹配参数用于反映所述目标用户操作行为序列和所述参考行为目标之间的匹配关系;基于每一个所述序列目标匹配参数,在每一个所述参考行为目标中,分析出所述目标用户操作行为序列对应的匹配行为目标,所述匹配行为目标用于对所述目标用户操作行为序列对应的目标用户进行行为指示操作,该行为指示操作包括对所述目标用户进行行为数据推送;其中,所述挖掘出每一个所述重要用户操作行为对应的操作行为含义数据的步骤,包括:提取到所述重要用户操作行为对应的行为描述音频帧,以得到每一个所述重要用户操作行为对应的行为描述音频帧序列;分别对每一个所述重要用户操作行为对应的行为描述音频帧序列进行关键信息挖掘操作,以输出每一个所述重要用户操作行为对应的关键信息描述向量,并确定出每一个所述重要用户操作行为对应的相关用户操作行为,以及,挖掘出该相关用户操作行为对应的关键信息描述向量;对于每一个所述重要用户操作行为,依据该重要用户操作行为对应的相关用户操作行为对应的关键信息描述向量,对该重要用户操作行为对应的关键信息描述向量进行关联显著性特征分析操作,以输出该重要用户操作行为对应的关联关键信息描述向量;分别依据每一个所述关联关键信息描述向量,分析出对应的每一个所述重要用户操作行为对应的操作行为含义数据;其中,所述分别对每一个所述重要用户操作行为对应的行为描述音频帧序列进行关键信息挖掘操作,以输出每一个所述重要用户操作行为对应的关键信息描述向量的步骤,包括:将所述重要用户操作行为对应的行为描述音频帧序列进行多特征空间映射操作,以形成对应的多个属于不同特征空间的音频帧映射向量,每一个所述特征空间对应的特征空间映射函数不同;对于每一个所述音频帧映射向量,将所述音频帧映射向量进行局部信息挖掘操作,以输出对应的多个局部类型对应的局部信息描述向量,所述局部信息描述向量属于所述行为描述音频帧序列中各类型的行为描述音频帧对应的向量,行为描述音频帧的类型是指音频帧对应的能量值;对于每一个所述音频帧映射向量,将所述多个局部类型对应的局部信息描述向量进行关联显著性特征分析操作,以输出该音频帧映射向量对应的关联显著性局部描述向量;将每一个所述音频帧映射向量对应的关联显著性局部描述向量进行聚合操作,以形成所述重要用户操作行为对应的关键信息描述向量;其中,所述对于每一个所述音频帧映射向量,将所述多个局部类型对应的局部信息描述向量进行关联显著性特征分析操作,以输出该音频帧映射向量对应的关联显著性局部描述向量的步骤,包括:对于每一个所述音频帧映射向量执行以下步骤:提取到预先构建的关联显著性特征分析模型;通过所述关联显著性特征分析模型,将所述多个局部类型对应的局部信息描述向量进行聚合操作,以形成对应的待处理聚合描述向量;基于所述关联显著性特征分析模型包括的滤波算子,将所述待处理聚合描述向量进行滤波操作,以形成对应的滤波聚合描述向量;对所述滤波聚合描述向量进行复制操作,以形成对应的复制描述向量,以及,基于所述复制描述向量,对所述滤波聚合描述向量进行关联显著性特征分析操作,以输出对应的候选描述向量;对所述候选描述向量和所述待处理聚合描述向量进行梯度优化操作,以形成对应的关联显著性局部描述向量;其中,所述确定出目标用户操作行为序列的重要用户操作行为,以及,分析出每一个所述重要用户操作行为对应的重要性评估参数的步骤,包括:将所述目标用户操作行为序列进行序列分割操作,以形成所述目标用户操作行为序列对应的多个原始分割行为序列片段,所述目标用户操作行为序列包括多帧行为记录视频帧或多帧行为描述音频帧,每一个所述原始分割行为序列片段包括时序连续的至少一帧行为记录视频帧或行为描述音频帧;在所述多个原始分割行为序列片段中,筛除掉属于指定序列片段集合的原始分割行为序列片段,以保留至少一个保留分割行为序列片段,所述保留分割行为序列片段为未被筛除掉的原始分割行为序列片段;基于每一个所述保留分割行为序列片段,确定出所述目标用户操作行为序列对应的重要用户操作行为,每一个所述保留分割行为序列片段包括至少一个时序相邻的用户操作行为,所述重要用户操作行为包括至少一个时序相邻的用户操作行为,在所述重要用户操作行为包括时序相邻的多个用户操作行为时,所述重要用户操作行为属于由多个用户操作行为组合形成的组合操作行为;分析出每一个所述重要用户操作行为对应的重要性评估参数;其中,所述基于人工智能的元宇宙体验用户行为预测方法还包括确定出所述指定序列片段集合的步骤,该步骤包括:确定出所述目标用户操作行为序列对应的目标行为场景信息;将与所述目标行为场景信息匹配的每一个典型用户操作行为序列进行序列分割操作,以形成对应的多个典型分割行为序列片段;分析每一个所述典型分割行为序列片段对应的典型片段数量占比,所述典型分割行为序列片段对应的典型片段数量占比包括:具有所述典型分割行为序列片段的行为序列数量与全部典型用户操作行为序列的数量之间的比值;基于所述典型片段数量占比大于或等于预先确定的参考典型片段数量占比的典型分割行为序列片段,组建形成对应的指定序列片段集合;其中,所述基于人工智能的元宇宙体验用户行为预测方法还包括确定出所述参考典型片段数量占比的步骤,该步骤包括:基于目前的参考数量占比,在每一个所述典型分割行为序列片段中,筛选出第一分割行为序列片段,所述第一分割行为序列片段为所述典型片段数量占比大于所述目前的参考数量占比的典型分割行为序列片段;分析出与所述目标行为场景信息匹配的每一个典型用户操作行为序列对应的其它序列片段数量,所述典型用户操作行为序列对应的其它序列片段数量用于反映在所述典型用户操作行为序列的每一个所述典型分割行为序列片段中筛除掉所述第一分割行为序列片段后保留的典型分割行为序列片段的数量;分析出所述其它序列片段数量大于预先确定的对比序列片段数量的典型用户操作行为序列,并确定该典型用户操作行为序列的数量与全部典型用户操作行为序列的数量之间的比值,以得到对应的其它片段数量占比;倘若所述其它片段数量占比小于预先确定的参考其它片段数量占比,则对所述目前的参考数量占比进行标记,以标记为参考典型片段数量占比;倘若所述其它片段数量占比大于或等于所述参考其它片段数量占比,则基于预先配置的优化参数,对所述目前的参考数量占比进行优化处理,以形成新的目前的参考数量占比,以及,基于所述新的目前的参考数量占比,回转执行所述基于目前的参考数量占比,在每一个所述典型分割行为序列片段中,筛选出第一分割行为序列片段的步骤;其中,所述基于每一个所述操作行为含义数据和预先确定的每一个参考行为目标的行为目标说明数据,分析出每一个所述重要用户操作行为与每一个所述参考行为目标之间的行为目标匹配参数的步骤,包括:基于每一个所述操作行为含义数据和每一个所述参考行为目标的目标主题说明数据,计算出每一个所述操作行为含义数据与每一个所述参考行为目标之间的初始匹配参数;基于每一个所述初始匹配参数,分析出每一个所述重要用户操作行为和每一个所述参考行为目标之间的行为目标匹配参数;其中,所述基于每一个所述操作行为含义数据和每一个所述参考行为目标的目标主题说明数据,计算出每一个所述操作行为含义数据与每一个所述参考行为目标之间的初始匹配参数的步骤,包括:基于每一个所述操作行为含义数据和每一个所述参考行为目标的目标主题说明数据,匹配出每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据之间的相同含义数据单元;在每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据之间的相同含义数据单元中,分析出每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据之间的第一相同含义数据单元,对于所述操作行为含义数据与所述参考行为目标的目标主题说明数据之间的第一相同含义数据单元,该第一相同含义数据单元不存在于该操作行为含义数据与该参考行为目标的目标主题说明数据的各相同含义数据单元中该第一相同含义数据单元之外的其它相同含义数据单元中;计算出每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据的第一相同含义数据单元的数据单元数目,在每一个所述参考行为目标的目标主题说明数据的数据单元数目中具有的单元数目占比;基于每一个所述单元数目占比、每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据的第一相同含义数据单元在对应的操作行为含义数据中的出现频率信息,并结合每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据的第一相同含义数据单元的第一重要度参数,分析出每一个所述操作行为含义数据与每一个所述参考行为目标的目标主题说明数据之间的初始匹配参数;其中,所述基于人工智能的元宇宙体验用户行为预测方法还包括:确定出每一个所述参考行为目标对应的匹配重要性参数;所述基于每一个所述序列目标匹配参数,在每一个所述参考行为目标中,分析出所述目标用户操作行为序列对应的匹配行为目标的步骤,包括:基于每一个所述序列目标匹配参数和每一个所述参考行为目标对应的匹配重要性参数,分析出所述目标用户操作行为序列和每一个所述参考行为目标之间具有的更新序列目标匹配参数;基于每一个所述更新序列目标匹配参数,在每一个所述参考行为目标中,分析出所述目标用户操作行为序列对应的匹配行为目标。
全文数据:
权利要求:
百度查询: 北京永乐颐康文化产业发展有限公司 基于人工智能的元宇宙体验用户行为预测方法及系统
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。