首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

基于RF-NSGA-II算法的双馈风机控制参数多目标分步辨识方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:三峡大学

摘要:基于RF‑NSGA‑II算法的双馈风机控制参数多目标分步辨识方法,搭建双馈风机辨识模型;基于随机森林算法对双馈风机网侧变流器的特征进行选择,计算udc、id,g、iq,g、P和Q等特征的重要性,选择重要性大的udc、id,g和iq,g特征作为观测量;采用随机森林袋外数据误差方法来衡量观测量与待辨识参数之间的关联程度;利用待辨识参数与观测量的关联程度,筛选出高关联度观测量,计算观测量的各区间关联系数,并据此确定低电压穿越控制参数分步辨识顺序;利用NSGA‑II算法求出最优参数解,得到双馈风机待辨识控制参数的辨识结果。该方法采用RF‑NSGA‑II算法对影响双馈风机低穿特性的控制参数进行高精度分步辨识,所述辨识方法在低电压穿越工况下具有良好的适应性,并能有效提高参数辨识精度。

主权项:1.基于RF-NSGA-II算法的双馈风机控制参数多目标分步辨识方法,其特征在于包括以下步骤:步骤1:搭建双馈风机辨识模型,包括网侧变流器,网侧变流器采用电网电压定向矢量控制;当低电压穿越时,网侧变流器提供动态无功支撑,q轴电流内环切换到低电压穿越LVRT控制模式;步骤2:基于随机森林算法对双馈风机网侧变流器的特征进行选择,计算udc、id,g、iq,g、P和Q等特征的重要性,选择重要性大的udc、id,g和iq,g特征作为观测量;步骤3:采用随机森林袋外数据误差方法来衡量观测量与待辨识参数之间的关联程度;步骤4:利用待辨识参数与观测量的关联程度,筛选出高关联度观测量,计算观测量的各区间关联系数,并据此确定低电压穿越控制参数分步辨识顺序;步骤5:利用NSGA-II算法求出最优参数解,得到双馈风机待辨识控制参数的辨识结果。

全文数据:

权利要求:

百度查询: 三峡大学 基于RF-NSGA-II算法的双馈风机控制参数多目标分步辨识方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。