Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

海量数据离群点检测中相关子空间搜索方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:哈尔滨工业大学(威海)

摘要:本发明属于数据处理技术领域,具体涉及一种海量数据离群点检测中相关子空间搜索方法。该方法主要包括:步骤1,对原始数据进行预处理,构建有序列表集合和哈希分片集合;依次利用预处理得到的所有哈希分片进行自适应相关属性判断,保留无重复的相关属性结果集;步骤2,根据步骤1的结果生成所有候选子空间,并利用预计算的有序列表集合和基于最频繁替换策略的FLA结构进行相关子空间判断;步骤3,对步骤2中结果进行冗余删除并返回所有相关子空间。本发明利用局部敏感哈希索引预先将数据集划分成内存可以容纳的哈希分片,避免了由于内存不足对处理海量数据集的限制;独立验证所有哈希分片进行无关属性剪切,大大减少了候选子空间的数量。

主权项:1.海量数据离群点检测中相关子空间搜索方法,其特征在于,主要包括:步骤1,对原始数据进行预处理,构建有序列表集合和哈希分片集合;依次利用预处理得到的所有哈希分片进行自适应相关属性判断,保留无重复的相关属性结果集;步骤2,根据步骤1的结果生成所有候选子空间,并利用预计算的有序列表集合和基于最频繁替换策略的FLA结构进行相关子空间判断;所述FLA结构是内存中维护的固定大小的数组结构,其大小由分配内存容量和数据集大小决定,其中每个元素存储着维度的有序列表和历史使用频率,在每次计算子空间相关性前随着计算子空间的变化进行适应性的动态数据更替,每次计算子空间相关性需要读取指定维度数据时先判断数据的存储位置,再按需读取并完成相应计算;步骤3,利用剪切策略对步骤2中结果进行冗余删除并返回所有相关子空间。

全文数据:

权利要求:

百度查询: 哈尔滨工业大学(威海) 海量数据离群点检测中相关子空间搜索方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。