Document
拖动滑块完成拼图
个人中心

预订订单
服务订单
发布专利 发布成果 人才入驻 发布商标 发布需求

在线咨询

联系我们

龙图腾公众号
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索
当前位置 : 首页 > 专利喜报 > 恭喜南京信息工程大学田青获国家专利权

恭喜南京信息工程大学田青获国家专利权

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

龙图腾网恭喜南京信息工程大学申请的专利一种基于流形学习的无监督预适应图像分类方法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN114241239B

龙图腾网通过国家知识产权局官网在2025-03-25发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202111522633.5,技术领域涉及:G06V10/764;该发明授权一种基于流形学习的无监督预适应图像分类方法是由田青;许衡;杨宏;朱雅喃设计研发完成,并于2021-12-13向国家知识产权局提交的专利申请。

一种基于流形学习的无监督预适应图像分类方法在说明书摘要公布了:本发明公开了一种基于流形学习的无监督预适应图像分类方法,该方法旨在构建图像分类模型,然后应用图像分类模型,完成待分类图像的分类,该方法包括以下步骤:1.构建图像样本集;2.构建特征提取网络;3.基于流形学习网络,构建特征向量降维网络;4.基于高阶信息匹配网络,构建分类器网络;5.构建源域图像样本的判别性损失模型、目标域图像样本的聚类损失模型、流形一致性损失模型、高阶张量匹配损失模型;6.引入交叉熵损失,获得最终损失模型;7.针对图像分类待训练模型进行训练,获得图像分类模型;该方法结合流形学习网络和高阶信息匹配网络,提取出的图像特征不仅有很好的迁移性,而且兼具很强的判别性,具有更高的分类准确率。

本发明授权一种基于流形学习的无监督预适应图像分类方法在权利要求书中公布了:1.一种基于流形学习的无监督预适应图像分类方法,其特征在于:按如下步骤S1-步骤S7,获得图像分类模型,然后应用图像分类模型,完成待分类图像的分类;S1.基于预设光照强度、分辨率、背景颜色,分别采集预设各类物品图像作为各个源域图像样本,各源域图像样本构成源域图像样本集,并基于其他光照强度、分辨率、背景颜色,采集相对应各物品图像作为目标域图像样本,各目标域图像样本构成目标域图像样本集,并根据各类物品的种类,按预设映射规则,定义各类物品的源域图像样本、目标域图像样本所对应预设各分类中的相应类别,且各相同类物品的源域图像样本、目标域图像样本所对应类别彼此相同;S2.基于ResNet-50网络,以图像样本为输入,以图像样本的高维特征向量为输出,构建特征提取网络;S3.基于流形学习网络,以图像样本的高维特征向量为输入,以图像样本的高阶统计信息为输出,构建特征向量降维网络;S4.基于高阶信息匹配网络,以图像样本的高阶统计信息为输入,图像样本所对应的图像类别为输出,构建分类器网络;S5.基于特征提取网络、特征向量降维网络、分类器网络,串联构建图像分类待训练模型,同时基于源域图像样本集与目标域图像样本集的参与训练,以特征向量降维网络的输出,构建源域图像样本的判别性损失模型Ldis、目标域图像样本的聚类损失模型Lcluster、流形一致性损失模型Lcons,以及以分类器网络的输出,构建高阶张量匹配损失模型Lhom;S6.基于源域图像样本的判别性损失模型Ldis、目标域图像样本的聚类损失模型Lcluster、流形一致性损失模型Lcons、高阶张量匹配损失模型Lhom,通过引入交叉熵损失Lce,获得最终损失模型L;S7.基于源域图像样本集与目标域图像样本集中各样本图像,以及各样本图像分别对应预设各分类中的相应类别,以图像样本为输入,图像样本所对应的相应类别为输出,结合最终损失模型L,针对图像分类待训练模型进行训练,获得图像分类模型。

如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人南京信息工程大学,其通讯地址为:210032 江苏省南京市江北新区宁六路219号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。