买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
摘要:本发明适用于生物信息学领域,具体是一种基于深度学习和长读测序的SNP和INDEL检测方法,包括:对待检测数据进行第一预处理,生成第一叠加图像,将第一叠加图像作为SNP检测模型的输入,输出得到SNP的VCF文件;对待检测数据进行第二预处理,生成第二叠加图像,将第二叠加图像作为INDEL检测模型的输入,输出得到INDEL的VCF文件;利用基于R语言的VcfR数据处理工具,对所得到的VCF文件中的数据进行变异检测和处理,得到基因组上的变异检测结果;使用IGV输出显示基因组上的变异检测结果。本发明使用了深度学习技术和长读测序技术,能够解决传统方法在灵活性与泛化能力、计算效率上的低性能,以及面对复杂问题时短读测序存在的无法检测区域的问题。
主权项:1.一种基于深度学习和长读测序的SNP和INDEL检测方法,其特征在于,包括:获取待检测数据,待检测数据包括长读测序数据与引用基因组数据;对待检测数据进行第一预处理,生成第一叠加图像,将第一叠加图像作为SNP检测模型的输入,输出得到SNP的VCF文件;对待检测数据进行第二预处理,生成第二叠加图像,将第二叠加图像作为INDEL检测模型的输入,输出得到INDEL的VCF文件;利用基于R语言的VcfR数据处理工具,对所得到的VCF文件中的数据进行变异检测和处理,得到基因组上的变异检测结果;使用IGV输出显示基因组上的变异检测结果。
全文数据:
权利要求:
百度查询: 安徽农业大学 一种基于深度学习和长读测序的SNP和INDEL检测方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。