买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:常州大学
摘要:本发明涉及图像处理技术领域,尤其涉及一种面向全天候的目标检测方法及系统,包括渲染不同天气条件下场景和目标物体的图像,构建源域数据集;实时采集不同天气条件下场景和目标物体的图像,构建目标域数据集;构建改进yolov5网络,将backbone的第1个CBS卷积、第2个CBS卷积和第8个CBS卷积替换为CBS_1卷积;将第1、2层的CBS卷积生成的低层特征、第8层生成的高层特征输入GRL层,生成对于源域和目标域通用的像素层级和语义层级的特征;将包含源域和目标域的数据集输入改进yolov5网络进行训练,利用最小化损失函数来收敛模型。本发明选择采用领域自适应技术来有效减少源域和目标域之间的分布差异。
主权项:1.一种面向全天候的目标检测方法,其特征在于,包括以下步骤:步骤一、渲染不同天气条件下场景和目标物体的图像,构建源域数据集;实时采集不同天气条件下场景和目标物体的图像,构建目标域数据集;步骤二、构建改进yolov5网络,将backbone的第1个CBS卷积、第2个CBS卷积和第8个CBS卷积替换为CBS_1卷积;将第1、2层的CBS卷积生成的低层特征、第8层生成的高层特征输入GRL层,生成对于源域和目标域像素层级和语义层级的特征;步骤三、将包含源域和目标域的数据集输入改进yolov5网络进行训练,利用最小化损失函数来收敛模型。
全文数据:
权利要求:
百度查询: 常州大学 一种面向全天候的目标检测方法及系统
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。