买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:海南大学
摘要:本发明涉及一种基于机器学习的蛋白冠上蛋白质相对丰度的预测方法及系统。所述方法包括:对各个机器学习模型进行训练评估确定一级预测器,并保存训练好的超参数和决策边界;基于超参数和决策边界以及蛋白质回归数据集进行二次训练,得到二级回归预测模型;将待预测蛋白质的特征信息输入至一级预测器中,得到分类预测结果;当分类预测结果中存在蛋白质吸附在纳米颗粒上时,将待预测蛋白质输入至二级回归预测模型,得到蛋白质相对丰度预测结果。二级回归任务是在一级分类任务的基础上进行,可减少训练时间;将分类与回归相结合可以实现对蛋白冠上蛋白质相对丰度的全面预测,提高了蛋白质相对丰度的预测性能。
主权项:1.一种基于机器学习的蛋白冠上蛋白质相对丰度的预测方法,其特征在于,所述方法包括:获取蛋白质分类数据集,根据所述蛋白质分类数据集对各个机器学习模型进行训练评估,并根据评估结果确定目标机器学习算法;将所述目标机器学习算法作为一级预测器,并基于所述一级预测器保存训练好的超参数和决策边界;基于所述超参数和决策边界以及蛋白质回归数据集进行二次训练,得到二级回归预测模型;确定待预测蛋白质,并将所述待预测蛋白质的特征信息输入至所述一级预测器中,得到分类预测结果;当所述分类预测结果中存在蛋白质吸附在纳米颗粒上时,将所述待预测蛋白质输入至所述二级回归预测模型,得到蛋白质相对丰度预测结果。
全文数据:
权利要求:
百度查询: 海南大学 基于机器学习的蛋白冠上蛋白质相对丰度的预测方法及系统
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。