Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于深度学习的电力骨干通信网络故障预测方法及系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:国网河南省电力公司信息通信分公司

摘要:本发明公开了一种基于深度学习的电力骨干通信网络故障预测方法及系统,方法包括:搭建并训练神经网络模型,构建深度学习模型,模型包括至少三个隐藏层和一个输出层;加载训练数据和测试数据,并对数据进行预处理;使用训练数据集对构建的深度学习模型进行训练;对模型进行测试以验证其性能,使用测试数据集对训练后的深度学习模型进行测试;使用训练后的模型对输入ID进行故障预测,并输出预测结果。本发明通过深度神经网络,能够从原始数据中逐层提取出从简单到复杂、从低级到高级的不同层次特征,增强了特征提取能力,减少人工特征工程的需要,并提高了特征提取的精度和全面性,不仅涵盖了数据的表面信息,也深入挖掘数据中的隐藏模式和深层信息。

主权项:1.一种基于深度学习的电力骨干通信网络故障预测方法,其特征在于,包括以下步骤:搭建并训练神经网络模型,构建深度学习模型,模型包括至少三个隐藏层和一个输出层;加载训练数据和测试数据,并对数据进行预处理;使用训练数据集对构建的深度学习模型进行训练;对模型进行测试以验证其性能,使用测试数据集对训练后的深度学习模型进行测试;使用训练后的模型对输入ID进行故障预测,并输出预测结果。

全文数据:

权利要求:

百度查询: 国网河南省电力公司信息通信分公司 一种基于深度学习的电力骨干通信网络故障预测方法及系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。