恭喜深圳大学张锡豪获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网恭喜深圳大学申请的专利基于脑电的多模态情绪数据预测方法、装置及相关介质获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN114118165B 。
龙图腾网通过国家知识产权局官网在2025-05-23发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202111465384.0,技术领域涉及:G06F18/241;该发明授权基于脑电的多模态情绪数据预测方法、装置及相关介质是由张锡豪;周如双;梁臻;李琳玲;黄淦;张力;张治国设计研发完成,并于2021-12-03向国家知识产权局提交的专利申请。
本基于脑电的多模态情绪数据预测方法、装置及相关介质在说明书摘要公布了:本发明公开了基于脑电数据的多模态情绪数据预测方法、装置及相关介质,该方法包括:基于域自适应神经网络对脑电数据进行预测投票,得到个体情绪预测标签数据;通过深度卷积网络模型对预设的视听内容提取深度视觉特征和深度听觉特征,并将所述深度视觉特征和深度听觉特征融合为深度视听融合特征;基于所述深度视觉特征、深度听觉特征和深度视听融合特征构建超图,并通过超图分割得到所述深度视觉特征、深度听觉特征和深度视听融合特征对应的潜藏情绪预测标签数据;对个体情绪预测标签数据和潜藏情绪预测标签数据赋予权重并融合,将融合后的结果作为情绪数据预测结果。本发明结合脑电数据和视听特征,进行多模态预测,从而提高情绪预测的准确性。
本发明授权基于脑电的多模态情绪数据预测方法、装置及相关介质在权利要求书中公布了:1.一种基于脑电数据的多模态情绪数据预测方法,其特征在于,包括:在不同分辨率下,对不同子频带提取用于训练的脑电数据的微分熵特征,并基于所述微分熵特征构建域自适应神经网络;基于所述域自适应神经网络对目标用户的脑电数据进行预测投票,得到个体情绪预测标签数据;通过深度卷积网络模型对预设的视听内容提取深度视觉特征和深度听觉特征,并将所述深度视觉特征和深度听觉特征融合为深度视听融合特征;基于所述深度视觉特征、深度听觉特征和深度视听融合特征构建超图,并通过超图分割得到所述深度视觉特征、深度听觉特征和深度视听融合特征对应的潜藏情绪预测标签数据;对所述个体情绪预测标签数据和潜藏情绪预测标签数据赋予权重并融合,将融合后的结果作为情绪数据预测结果。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人深圳大学,其通讯地址为:518000 广东省深圳市南山区粤海街道南海大道3688号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。