恭喜杭州电子科技大学姜明获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网恭喜杭州电子科技大学申请的专利一种基于预训练模型结合句法子树的关系分类方法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN114328924B 。
龙图腾网通过国家知识产权局官网在2025-05-02发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202111641146.0,技术领域涉及:G06F16/35;该发明授权一种基于预训练模型结合句法子树的关系分类方法是由姜明;孟佳营;张旻设计研发完成,并于2021-12-29向国家知识产权局提交的专利申请。
本一种基于预训练模型结合句法子树的关系分类方法在说明书摘要公布了:本发明公开了一种基于预训练模型结合句法子树的关系分类方法。首先是利用BERT预训练模型构建词向量、句子表征向量、实体向量。为了结合句法信息,利用Spacy工具包对于句子进行依存句法分析,然后对于分析结果进行预处理,得到边以及边的类别。在结合句法信息时利用循环神经网络RvNN进行递归计算,得到每个子树的表征向量,这一步的目的是得到句法依赖树的拓补信息、语义信息、边的类别信息。将每个子树的表征向量进行最大池化获得树的表征向量。将实体向量、句子表征向量、树的表征向量进行拼接,然后进行关系类别预测。本发明能更好的解决词向量和句法子树信息融合的问题,并且能提取到更深层的、信息更充分的词向量,具有很好的鲁棒性。
本发明授权一种基于预训练模型结合句法子树的关系分类方法在权利要求书中公布了:1.一种基于预训练模型结合句法子树的关系分类方法,其特征在于包括以下步骤:步骤1对数据集中的句子S进行分词,构建输入序列;将输入序列通过BERT预训练模型,获得每个词的输入词向量、整句话的句子表征向量、两个需要预测关系类别的实体向量;步骤2对数据集中的句子S,利用Spacy工具进行依存句法分析,得到句子中词与词之间的边、边的类别以及句法依赖树,利用映射函数将边的类别转换成边的类别id;步骤3以句法依赖树中两个实体为叶子节点,并计算两个叶子节点的最近公共祖先节点;获得以最近公共祖先节点为根,两个实体节点为叶子的子树,将输入词向量中该子树部分的词向量、边的类别id、边输入到递归神经网络RvNN进行计算,得到每个子树表征向量;步骤4将所有子树表征向量进行最大池化,得到句子的树表征向量;步骤5将句子表征向量、句子的树表征向量、两个需要预测关系类别的实体向量进行拼接输入到softmax分类函数中进行分类,预测关系类别。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人杭州电子科技大学,其通讯地址为:310018 浙江省杭州市下沙高教园区2号大街;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。