Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

基于模糊RBF神经网络滑模观测器的电机控制方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:南京工业大学

摘要:本发明提出了一种基于模糊RBF神经网络滑模观测器的电机控制方法,包括:建立永磁同步电机的数学模型,通过Clark变换将坐标变换到两项静止坐标系α‑β轴;将α‑β轴上的控制电压输入至滑模观测器中,得到α‑β轴的电流观测值,将得到的电流观测值与电流实际值做差得到电流误差,将电流误差输入模糊RBF神经网络,用于在RBF神经网络和模糊控制的协同作用下得到滑模增益比例因数,通过比例因数调节滑模增益,将整定后的滑模增益送入开关函数中以得到反电动势,最后经过锁相环解调从而得到电机的位置信息和转速的估计值。本发明对电机转子位置和速度的估计精度比传统的滑模观测器更加准确,并且有效地抑制了系统的抖振。

主权项:1.基于模糊RBF神经网络滑模观测器的电机控制方法,其特征在于,包括:建立永磁同步电机的数学模型,通过Clark变换将坐标变换到两项静止坐标系α-β轴;将α-β轴上的控制电压输入至滑模观测器中,得到α-β轴的电流观测值,将得到的电流观测值与电流实际值做差得到电流误差,将电流误差输入模糊RBF神经网络,用于在RBF神经网络和模糊控制的协同作用下得到滑模增益比例因数,通过比例因数调节滑模增益,将整定后的滑模增益送入开关函数中以得到反电动势,最后经过锁相环解调从而得到电机的位置信息和转速的估计值。

全文数据:

权利要求:

百度查询: 南京工业大学 基于模糊RBF神经网络滑模观测器的电机控制方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术