Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于VMD-WmRMR-DF的注意力缺陷多动障碍分类方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:杭州电子科技大学

摘要:本发明公开了一种基于VMD‑WmRMR‑DF的注意力缺陷多动障碍分类方法,包括如下步骤:步骤1、构建DF‑ADHDNet模型,所述DF‑ADHDNet模型以深度森林分类器为主网络,并在深度森林分类器中集成信号分解模块和特征选择模块;步骤2、获取ADHD患者和正常受试者的EEG信号,分别对两者的信号进行标签并构成数据集,对数据集进行预处理,将预处理后的数据集按比例划分为训练集和测试集;步骤3、使用训练集对DF‑ADHDNet模型进行训练,并对网络模型参数调优,使网络达到最优效果;步骤4、使用测试集评估完成训练后得到最终的DF‑ADHDNet模型;步骤5、应用最终的DF‑ADHDNet模型实现ADHD分类。该方法实现了自动化、智能化的ADHD诊断功能,并具有较高的诊断准确率和效率。

主权项:1.一种基于VMD-WmRMR-DF的注意力缺陷多动障碍分类方法,其特征在于,包括如下步骤:步骤1、构建DF-ADHDNet模型,所述DF-ADHDNet模型以深度森林分类器为主网络,并在深度森林分类器中集成信号分解模块和特征选择模块;步骤2、获取ADHD患者和正常受试者的EEG信号,分别对两者的信号进行标签并构成数据集,对数据集进行预处理,将预处理后的数据集按比例划分为训练集和测试集;步骤3、使用训练集对DF-ADHDNet模型进行训练,并对网络模型参数调优,使网络达到最优效果;步骤4、使用测试集评估完成训练后得到最终的DF-ADHDNet模型;步骤5、应用最终的DF-ADHDNet模型实现ADHD分类。

全文数据:

权利要求:

百度查询: 杭州电子科技大学 一种基于VMD-WmRMR-DF的注意力缺陷多动障碍分类方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。