首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于卷积字典学习和深度展开的图像去噪方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:南京工业大学

摘要:本发明公开了基于卷积字典和深度展开的图像去噪方法,属于计算机视觉技术领域,该方法包括:以清晰图像为基础构造噪声图像,并将其与对应清晰图像组成的样本对,然后划分样本对为训练集和测试集;设计具有隐式先验的字典学习模型,并使用相应的优化算法以求解这个模型;结合深度学习相关理论,将字典推广为卷积层,并构建相应的深度展开网络;使用训练集训练展开网络,获得训练好的模型,并利用测试集测试模型去噪性能。本发明方法将通用字典学习模型与深度展开结合,通过迭代求解三个子问题,借助深度学习技术,以可解释性的方式增强展开网络的去噪的效率,提升模型在彩色图片和灰度图片等场景下的图像去噪性能。

主权项:1.一种基于卷积字典学习和深度展开的图像去噪方法,其特征在于,包括如下步骤:步骤1、以清晰图像为基础构造噪声图像,并将其与对应清晰图像组成的样本对,然后划分样本对为训练集和测试集;步骤2、设计具有隐式先验的字典学习模型,并使用相应的优化算法以求解这个模型;步骤3、针对步骤2中的优化求解方法,结合深度学习相关理论构建相应的深度展开网络;步骤4、使用步骤1取得的训练集训练步骤3确定的展开网络,获得训练好的网络模型;步骤5、使用步骤1取得的测试集对步骤4训练的网络模型进行测试,获得图像去噪结果。

全文数据:

权利要求:

百度查询: 南京工业大学 一种基于卷积字典学习和深度展开的图像去噪方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。