买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:华侨大学;福建南方路面机械有限公司
摘要:一种基于目标高度信息和色彩信息的固废在线识别方法,包括:物料传送模块、高度信息采集模块、色彩信息采集模块、脉冲控制模块、数据传输模块和数据处理模块;高度信息采集模块和色彩信息采集模块设置在物料传送模块上方以采集传送的建筑垃圾的高度和色彩信息;脉冲控制模块与高度信息采集模块和色彩信息采集模块分别相连接以控制同时采集;高度信息采集模块和色彩信息采集模块分别与数据传输模块以将采集的信息发送至数据处理模块;数据处理模块对高度信息和色彩信息进行预处理后,通过改进的卷积神经网络对高度信息和色彩信息进行特征融合并分类,输出建筑垃圾分类结果。本发明能极大地提高目标检测的准确率,并满足在线检测的要求。
主权项:1.一种基于目标高度信息和色彩信息的固废在线识别方法,其特征在于,包括:物料传送模块、高度信息采集模块、色彩信息采集模块、脉冲控制模块、数据传输模块和数据处理模块;所述高度信息采集模块设置在所述物料传送模块上方以采集所述物料传送模块传送的建筑垃圾的高度信息;所述色彩信息采集模块设置在所述物料传送模块上方以采集所述物料传送模块传送的建筑垃圾的色彩信息;所述脉冲控制模块与所述高度信息采集模块和色彩信息采集模块分别相连接以控制所述高度信息采集模块和色彩信息采集模块同时采集所述建筑垃圾的信息;所述高度信息采集模块和色彩信息采集模块分别与所述数据传输模块将采集的高度信息和色彩信息发送至所述数据处理模块;所述数据处理模块对高度信息和色彩信息进行预处理后,通过改进的卷积神经网络对高度信息和色彩信息进行特征融合并分类,输出固废的分类结果;所述卷积神经网络采用CascadeR-CNN卷积神经网络,属于多阶段目标检测模型;改进的卷积神经网络修剪到只有1层卷积层,属于稀疏特征无监督学习算法,以稀疏表示为基础,同时对提取的特征进行总体稀疏和生命周期稀疏;通过改进的卷积神经网络对高度信息和色彩信息进行特征加权融合,加权融合公式如下: 其中,其中PC和PH分别表示颜色特征和高度特征的观测密度,表示颜色特征的更新权值,分别表示第k-1和第k个像素点的颜色特征权值;表示高度特征的更新权值,分别表示第k-1和第k个像素点的高度特征权值;Wi表示最终的权值;a和b分别代表两种特征的有效权值的数目,a趋近于0的时候,只有高度特征起作用,当b趋近于0的时候,只有颜色特征起作用;N表示图像像素点的个数;i表示像素点。
全文数据:
权利要求:
百度查询: 华侨大学 福建南方路面机械有限公司 基于目标高度信息和色彩信息的固废在线识别方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。