Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

基于BERT和Att-BiLSTM的论点对识别方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:重庆邮电大学

摘要:本发明属于自然语言处理领域,具体涉及一种基于BERT和Att‑BiLSTM的论点对识别方法,包括获取法律判决书中的数据,对数据进行预处理;将预处理的数据输入到训练好的法律论点对分类模型中,识别出诉方辩方相对应的法律论点对,根据法律论点对进行司法判决;所述法律论点对分类模型包括BERT模型和基于注意力长短期记忆循环神经网络Att‑BiLSTM分类模型;本发明在进行数据预测过程中加入了分层Attention机制,该机制为每个单词分配一个注意力权重,并为每个句子分配一个注意力权重,融合了句子级和词级特征,可以将重要特征突出,避免长序列导致的历史记忆变弱的问题,可以有效的提高识别效果。

主权项:1.一种基于BERT和Att-BiLSTM的论点对识别方法,其特征在于,包括:获取法律判决书中的数据,对数据进行预处理;将预处理的数据输入到训练好的法律论点对分类模型中,识别出诉方辩方相对应的法律论点对,根据法律论点对进行司法判决;所述法律论点对分类模型包括BERT模型和基于注意力长短期记忆循环神经网络Att-BiLSTM分类模型;法律论点对分类模型的训练过程包括:S1:获取法律判决书中的文本数据;提取文本数据的辩方论点和诉方论点;S2:辩方论点和诉方论点进行集合,得到数据集;将数据集划分为训练集、验证集以及测试集;S3:将训练集中的数据输入到BERT模型,得到论点对的语义向量;S4:将论点对的语义向量输入到Att-BiLSTM分类模型中得到预测分类结果;S5:根据预测分类结果确定分类损失函数;使用Adam算法不断调整Att-BiLSTM分类模型和BERT模型的参数,当损失函数最小时,完成模型的训练。

全文数据:

权利要求:

百度查询: 重庆邮电大学 基于BERT和Att-BiLSTM的论点对识别方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。